Tagged: rose wine colours

Wine colours and the Brain, Anatomy and Physiology of Vision in Wine Tasting – Part 3 The Brain

Reality is an illusion that occurs due to a lack of wine.

Anatomy and Physiology of wine tasting as appeared in part 2: https://wine4soul.com/2012/12/08/wine-sight-receptors-brain/ continues… How We See Colour?

retina-layers              orientation-map        rods and cones

There are millions of colour photoreceptors; cones in the retina, and three different types of cones, each type of cone is sensitive to a different wavelength of light. Different wavelengths correspond to different colours. When light strikes a photoreceptor it releases a chemical that begins a process that enables the brain to recognize the “right” colour. In order to see colour properly, all three types of cones must be present, or the person’s eye will not have the photoreceptor that reacts to that particular wavelength, and colours are a combination of a variety of wavelengths. The chemical stimulus, from the cone to the brain that enables colour vision is facilitated through a chemical reaction of the reflected light with a light-sensitive protein called: Rhodopsin, which is present in the disk membranes of rod cells, and causes a reaction that acts as a trigger inside the cell. Rhodopsin requires the help of an intermediary chemical called the G-protein (I guess this is complicated enough). The human eye and brain together translate a certain reflected light into colour. Light receptors within the eye transmit messages along the optic nerve to the vision center in the brain, which produces the “recognition” of a certain colour.


The brain’s neural mechanisms also uses “memory” and experience to help with speedy identification, of which colour belongs to what object, so we do not mistakenly see a translucent wine in a red glass.

Without the neural processes of the brain, we wouldn’t be able to understand colours of objects any more than we could understand words of a language we hear but don’t know,” said Steven Shevell, color and vision specialist .
The surface of an object reflects some colors and absorbs all the others. We perceive only the reflected colors. Thus, red is not “inside” red wine. The surface of the wine reflects the wavelengths we see as red and absorbing all the rest.
800px-Modern_Color_Vision_Model.svgThe immediate process of judging a colour begins in the retina, which has three layers of cells. Signals from the red and green cones in the first layer are compared by specialized red-green “opponent” cells in the second layer. These opponent cells compute the balance between red and green light coming from a particular part of the visual field. Other opponent cells then compare signals from blue cones with the combined signals from red and green cones.
The human eye can perceive more variations in warmer colors than cooler ones. This is because almost 2/3 of the cones process the longer light wavelengths (reds, oranges and yellows).
ROSÉ WINES

20110627-wine-rose-primary
Rose wine displayed above exhibit hues of Pink, a pale tint of red. Pinks can range from:
Onion outer skin,
Salmon hue,
Raspberry Rosé,
Coral pink,
Pinkish Orange colour.
All the above depend on their grape origin and variety, plus the wine making method. Although they may exhibit exquisite colour array, these wines are rarely suitable for keeping more than 2 years beyond their vintage year. Their colour is not as stable as most reds and quality white wines.

The Colors of Red Wine:
cabernet1Blue & red Anthocyanins which are present in the grape skin dissolve into the grape juice while crushingCopy (2) of pinotnoir3 than before the fermentation process, the juice and skins are moved into the fermentation tanks, and because anthocyanins are soluble in alcohol they tint the liquid RED. The style and “depth” of the pressing process facilitates their dispersal into the wine. The dissolved Antocyanins are the contributors of the red / purple color of red wine. The aging process of wine in oak barrels and in the bottle tie these dyes to tannins to form long and heavy tannin molecules become less lively, loses a little from the purple shade and develops into shades of Red that vary, depending on the grape variety, region of origin, exposure to oxygen, climate/fruit ripeness before harvest etc.. Within a few years these molecules get “older” in a bottle and turn to rusty shades of red to maroon or even brown.

RED WINES

220px-Color_icon_red.svg
Main Shades:
1. Ultraviolet: Almost all young red wines of deep purple, purple color usually indicates age young wine or wine is
2. Purple- Crimson: Dark red color with a little blue. This is the color of most reds from all over the globe including those of Bordeaux and Bourgogne in their youth immediately after bottling.
3. Red Bordeaux: Bordeaux wine colour: colour that is colour of the majority of Bordeaux wines during the transition between shades and hues as they start to mature, as they approach readiness and full maturity, Scarlet.
The English used to call it CLARET a red wine from Bordeaux. Indicating it being also clear.
4.Cherry- Bright Red: The higher the wine’s acidity (low pH) amount of red pigment to a higher and more active radiating health and indirectly implies the ability the wine’s ability to preserve fruit flavors for a longer period, with chances of maturing in proper balance increasing. Cherry is also the colour of fresh Sangiovese, and Zinfandel.
5. Brown-Red Tile: The colour of the fully matured red Bordeaux wines. If this colour appears in a relatively young wine, it usually indicates exposure to intense heat in various stages of the wine-making process, including the period before the harvest (extreme heat wave), or over exposure to oxidation in the barrel.
6. Reddish Brown mahogany colour – milder than the above, less extrovert colour, is the shade of a typical high quality red Bordeaux wines aged 15-30 years or less, fully “ripe” and ready for drinking, or unfortunately wines from a lesser origin , beyond their peak showing signs of fatigue.
7. Orange-brown colour of wines more than 30 year of age that might have oxidized to oblivion. This color is missing a spark and suggesting the “death” of the wine we look at, wine gone bad?
.
Many terms are used to describe the main colors in red wines are:
Purple-red: the common shade for young, often immature wines. Purple is also the colour of Barbera, and Amarone
Ruby ; the color of the polished ruby gemstone: a more evolved but still youthful shade also the colour of young Pinot Noir, or Tempranillo.
Garnet: the color word for classic wines at the peak of their maturity
Lust: is a rich shade of red.
Crimson: is a strong, bright, deep red color combined with some blue, resulting in a slight degree of purple.
Rusty is red colour with brownish tints of rust – some Old Bordeaux’s of over 25 years of age exhibit this colour
Fire Brick color of oven fire brick. – Old Bourgogne wines of over 25 years
Redwood rose – the colour of the wood of the Sequoia/ redwood tree
Maroon – chestnut brownish red – Tawny Port
Blackish red – Shiraz, Vintage Port

Maturing wines tend to change to Brick red: paler shades associated with older but still healthy wine, sometimes Copper as in Aged Grenache, Brick red Mature Pinot Noir, aged Bordeaux, Garnet as in Cabernet Sauvignon, Merlot, Nebbiolo.
Depth of color

IMG_5533                                        IMG_5562

Wine colour’s depth or opacity measure of how dark is the wine. In wine tasting, the depth of color results from the concentrations of color and the wine substance, the more deep the color the less light to passes through it and it will appear darker, or “richer” in colour. Wines with less depth may appear diluted, watery almost transparent.
Depths of wine colours vary greatly depending on the grape variety used to produce the wine, the vintage conditions, production process methods: fermentation steel or oak vats, aging methods before and after bottling.
Depth of color, when used as a measure of quality, typically applies to red wines, as they naturally contain more coloring, tannins, and other components that can alter the wine’s depth.
depth of wine colour is defined as: watery, pale, medium, deep, dark, or opaque.

Visible Defects
IMG_5582Various types of defects in manufacturing – affect Wine faults in clarity.
Wine with faint colors that do not sparkle may suggest a flaw, Light cloudiness such as milky appearance, reminiscent of the appearance of whole unfiltered apple juice.Some wine fouling is associated with air pollution or related to metal parts (iron or copper) or residual products in genetically engineered residual yeast and in wine that was not filtered or sank at the bottom of tank / barrel..
An old wine with sediment that was violently shaken prior to its opening, will introduce dairy cloudy effect even though it has no real fault, but it may tarnish the visual enjoyment from the wine and as we see this is an important introduction to our primary approach to the wine.oil contamination

Faded or dull colours in wine appearing “unpolished” might refer to a fault, surface of wine after pouring to the glass should appear shiny if it has “stains” reminiscent of oil floating on liquid, or as a soap bubble surface that reflects prismatic rainbow appearance all of these are an indication to a fault in the wine or contamination that is problematic. Small bubbles remaining for a very long time around the rim of very mature / old wines might refer to over maturity… the wine yielded to the “pressures of time” and is beyond its peak.

Hue
The hue of a wine color is the inner definition of colour description beyonf the basic colours: red, yellow, pink. Your own interpretation of what colour you see and how would one describe it?
When you describe what you see, association comes into mind and affect the semantic interpretation of what you actually see.In white wines the most common descriptions would be anything from transparent through greenish to yellows in varying depths to gold and amber. Rosé wines range from pink to salmon and orange. Red wines, from purple-red, ruby, to garnet brown and even black,. Take note if the color hue is consistent throughout the glass when tilted or does it form a rim of different hues. Some wines, particularly older wines will start to show color changes within the body of wine in the glass towards the outer edge – the rim or meniscus.
Clarity was discussed on the previous post, As a rule most wines are relatively clear sometimes sediments are present in the wine they are residual fruit that sank slowly in the bottle, these sediment are not harmful and perfectly safe to drink it but may add a bitter taste to the finish if chewed. If sediments are stirred while pouring wine it can give the appearance of a slight haziness.As a rule, severe cloudiness in wine is considered a flaw.

WineLegs1Viscosity: “Legs”

Wine “legs” are the stripes of translucent liquid that runs down the sides of the glass after swirling the wine. Sugar concentration is one of the several factors that influence wine legs. With higher sugar content, the liquid is more viscous. Therefore, dessert wines will always have much more pronounced legs. Another factor that influences increase in viscosity of wine is alcohol content. Since alcohol is more viscous than water wines with more alcohol will have more legs. Any compound that affects viscosity produces wine legs.
functional areas brainAll of these factors in wine Colour: shade, hue, clarity and depth are “met” by just the first sense in wine tasting: Vision and its sophisticated organ the Eye. And all these electrical signals that somehow are interpreted by our brain to what we call sight, It is a wonder, that is only partially understood (let alone explained) but that will have to do for now.
Next post we “move” to sense number 2 in wine tasting SMELL and the fun will continue…

Your WINEGUIDE

Sight, Anatomy and Physiology of Wine Tasting – Part 2 Sight Receptors

Wine is sunlight, held together by water. – Galileo

 sense one in wine tasting – SIGHT, as appeared on https://wine4soul.com/2012/10/28/vision-anatomy-and-physiology-of-wine-tasting/ continues…

Physiologically, sight is initiated when reflected light of different wave lengths: colour, hit the eye.

reds                             external-eye-xsection

We have the bottle before us, the glass is filled (no more than a third up), the reflected light in different colours hits the external surface of the eyeball: The Cornea, travels through the lens and inwards through the Vitreous Humor, to hit the Retina, the innermost layer of the eye ball. The Retina consists of nerve tissue, Photo-receptors that sense the light entering the eye, and start translating it as the images of our vision in the form of shape and colour in the brain.

The Physiology of sight

color sight

Photoreceptors are specialty cells in the Retina, they allow us to see shapes, colors and the combination of both, something we all take for granted.

How is it done? The retina contains 2 kinds of photoreceptors:

rods and cones1. Rod cells: These function only in dim light and are blind to colour. Only the highest-intensity output gets through; so contrast and visual definition are improved.

These receptors enter into function when we enter a dark cellar full of wine wonders, or when we stroll down the vineyard at night (with or without our lover, better with!)

2. Cone cells: The other kind of photoreceptor cell. There are three different types of cones, sensitive to different light wave lengths (Red Green & Blue). The cones operate in bright light and are responsible for high acuity vision, as well as ability to “see” colour.

Rods and cones form an uneven mosaic within the retina; there are 10 times more rod cells than cones. Rods are concentrated at the outer edges of the retina. There are approximately 130 million rod cells in the human retina. Rod cells are almost entirelyrod_and_cone_cells responsible for peripheral and night vision. They are 100 times more sensitive to a single photon than cones so rods require less light to function than cones and allow us to see in the dark. Single Rod cells collect and amplify light signals. However, this convergence comes at a cost to visual acuity / resolution, because the accumulated information fovea and receptorsfrom several cells simultaneously is less accurate than information from each rod cell individually. But that will have to do since we look at wine under good light conditions and not in the dark.

In the retina’s center – fovea, cones are highly concentrated 5-10 times more than on the rest of the retinal surface, this area is described by Nobel Prize winner Jeremy Nathans as: “the most valuable square millimeter of tissue in the body.”

spectrum

 The first kind of cone responds to red colour (light of Long wavelengths – L around 564–580 nm); The second type responds to green colour (Medium wavelength – M, 534–545 nm), The third type responds to blue colour (Short wavelength – S, 420–440 nm), The difference in the signals received from the three cone types in varying degree of stimulus strength which allows the brain to perceive all possible colours.  The brain combines the information from each type of receptor to give rise to different perceptions of different wavelengths of light and ultimately the correct colour.

sweet wineWine comes in a wide variety of colours shades and hues. It is these receptors and the wonders of the final interpretation of these signals into what we call sight, in our brain, will allow us to distinguish between different grape varieties, wines from different regions, wines in different state of evolution and wine making methods just by mere sight, with no other senses involvement.

Several theories explain the mechanism of colour vision, Helmholtz’s trichromatic theory & Hering’s opponent process theory, they differ on the exact point colour processing actually begins, either within the800px-Modern_Color_Vision_Model.svg receptor cells in the retina or slightly behind it, at the level of retinal ganglion cells and beyond. Visual information is then sent to the brain from retinal ganglion cells via the optic nerve to the optic chiasm: a point where the two optic nerves meet and cross each other. Information from one visual field crosses to the other side of the brain to the visual cortex.

Cone cells allow us to stabilize the colour constancy of an object, so when we look at red wine we preserve an ability to see the true colours of our object for instance red wine in different hues and shades.

clarity:

The wine clarity is wine easily examined at a slight tilt under clear light conditions either with the background of a white paper or a well lit background. And brightness is reflected from it. Fresh wine should have a clear spark ‘sneaky’ kind of wink and it looks sleek and shiny.

Clarity is graded to 3-4 levels:

Brilliant or Crystalline: perfect transparency; the surface of the wine reflects the light with a sparkle.

Clear: normal state of clarity

Dull: a partial lack of luster

Cloudy or slushy: with or without suspended particles visible to the naked eye

IMG_5531

Wine, whatever its category should be clear, perfectly transparent and free of foreign deposits or suspended particles, most suspended particles are wine deposits and are not associated with wine faults. Signs of cloudiness may indicate a defect. A fine wine of any color at its prime should be not only clear but also bright with a luminous quality.

Type of Wine – Obviously, different types of wines will have dramatically different wine colour..White wines tend toward the more clear yellow and gold end of the spectrum while red wines can vary from light red to deep purple. Rosé wines are somewhere in between. Additionally, your expectation of what a wine should look like depends on the type of wine in question. For example, while many Cabernet Sauvignon, JPEG Image (31024)based wines will be dark purple or even close to opaque, Pinot Noir-based wines tend to be lighter with less depth of color and a lighter hue.

Is the color of the wine appropriate for the type of wine you taste? You will learn this as you go along and get more experience with different types of wines.

The COLOURS of WINE

Colour is simply light of different wavelengths and frequencies that we can actually see and is made up from photons, reflection of light from the wine (as our object) is what we see in form, shape, and colour with its inner diversity of different hues and shades.  .

Wine colours, originate from the grape’s skin. Grape juice from red or white varieties is usually transparent (clear to cloudy). Anthocyanins are the chemical compounds that give wine white or red its colour, or pigment.

Different “exposure” to grape treatments like: amount and type of crushing, which exerts colors into the liquid. Changes in temperature, contact of broken skin with the juice, exposure to oxygen, fermentation with or without the skins (lees), length of fermentation, type of tanks: barrel or steel, etc. All of these factors change and affect the wine’s colour, which keeps changing even after bottling, as aging affects the depth and hue of the basic color of each wine. Different grape varieties contribute different hues of white yellow or red as described below.

 

WHITE WINES

chardonnay1Polyphenols contribute to the yellow colour of white wines, phenols concentration in different grapeCopy (2) of muscat_blanc variety varies: level of phenols in the Riesling grape is very low hence they appear almost transparent, Chardonnay on the other hand due to high phenolic concentration will appear darker : yellow lemony colour. Apart from phenols, maturity level of the grape will also affect the colour. The riper the grape, the darker shades of yellows in white wines.

 The colors of the wine can vary strongly depending on age, concentration and wine making techniques. Colour of white wines deepens with age, tending toward full straw or pale gold. More mature dry wines, particularly if aged in wood, take on rich golden tones, sometimes even with hints of copper or brass. Brown hues are a sign of over oxidation, (a defect in wine), but in certain fortified wines such as Marsala, it is a normal feature. Hints of red in a white wine are usually indications of a fault.

White Wine Colours:

The grapes and wines below, usually exhibit the listed colors.

Clear with a greenish tint-: Indicative of young wines with residual chlorophyll, mainly from cold growing regions: Chardonnay from Chablis, German Rieslings, and young New Zeeland Sauvignon Blanc    .wine_color_white_01

Greenish yellow: Sauvignon Blanc from slightly warmer growing regions    wine_color_white_02

Pale yellow – Straw: Colombard, Grüner Veltiner, Gewürztraminer               wine_color_white_03

Light gold-Gold : Chenin Blanc also characteristic of great wines in their mature state  wine_color_white_04

Golden yellow: Older Bourgogne Chardonnay, Viognier, Sémillon               wine_color_white_06

Gold: Dessert wines                       wine_color_white_07

old white wine colourBrownish yellow: Sherry, over matured white Burgundy   wine_color_white_08

Amber: Vin Santo, Tokaji            wine_color_white_09

Amber Tawny: typical of OLD dessert or wines made from partially dried grapes. Also the unhealthy shade of oxidized wine.wine_color_white_10

Brown: Marsala

These colours are an indication to the content of the glass on the eye level, well before our nose or taste buds go into wine tasting action! Wines exhibiting colours beyond their expected, ordinary hue may already be “suspected” of a fault of some sort either in the winemaking process, or more likely in their maturing state. Above is the colour of the 1962 Maison Noemie Verneaux Mersault Charmes, we opened (a magnum) the wine forty years old now!!! was slightly oxidized but still drinkable! This was its colour, (between us from now on I will photo real wine colors and exchange the colours above, with them!), I would say it falls between deep “old gold” and Amber what a delightful robe adorns these wineglasses.

Wine colour and state of clarity are mentioned as old as the New Testament (Proverbs 23:31):

King James Bible (Cambridge Ed) Look not thou upon the wine when it is red, when it giveth his colour in the cup, when it moveth itself aright.

New American Standard Bible : Do not look on the wine when it is red, When it sparkles in the cup, When it goes down smoothly;

Holman Christian Standard Bible : Don’t gaze at wine because it is red, when it gleams in the cup and goes down smoothly.

International Standard Version: Don’t stare into red wine, when it sparkles in the cup and goes down smoothly.

Next post will continue re: Rose’ and Red wines their colours and the way we see and perceive them

You’ll SEE

YOUR WINEGUIDE